Lactone-Based Liquid Electrolytes for Fluoride Shuttle Batteries
نویسندگان
چکیده
Rechargeable secondary batteries operating through fluoride-ion shuttling between the positive and negative electrodes, referred to as fluoride shuttle (FSBs), offer a potentially promising solution overcoming energy-density limitations of current lithium-ion battery systems. However, there are many technical issues that need be resolved achieve high-quality fluoride-carrying electrolytes ensure reversible transformations metal its counterpart at both electrodes. Here, we introduce novel lactone-based liquid consisting either CsF or KF, which prepared by solvent substitution method. Although maximum concentration achieved method is approximately 0.05 M, these systems behave strong where CsF(KF) almost fully dissociated into Cs + (K ) F ? ions give ionic conductivity 0.8 mS.cm ?1 . Hence, supports electrochemically active can drive metal/metal-fluoride room temperature for wide range irreversible reductive reactions solvent, also promoted ions, limit currently potential window ?1.5 V vs standard hydrogen electrode.
منابع مشابه
Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.
2.1. Solvents 4307 2.1.1. Propylene Carbonate (PC) 4308 2.1.2. Ethers 4308 2.1.3. Ethylene Carbonate (EC) 4309 2.1.4. Linear Dialkyl Carbonates 4310 2.2. Lithium Salts 4310 2.2.1. Lithium Perchlorate (LiClO4) 4311 2.2.2. Lithium Hexafluoroarsenate (LiAsF6) 4312 2.2.3. Lithium Tetrafluoroborate (LiBF4) 4312 2.2.4. Lithium Trifluoromethanesulfonate (LiTf) 4312 2.2.5. Lithium Bis(trifluoromethanes...
متن کاملIonic Liquid Based Electrolytes for High-Temperature Lithium-Ion Batteries
Today, lithium-ion batteries (LIBs) are ubiquitous in mobile phones, laptops, and other portable devices. The research community strives to further improve the LIB to increase electric driving distance and efficiency of both hybrid electric vehicles (HEVs) and fully electric vehicles (EVs). Conventional LIBs need to be strictly temperature controlled, most often cooled, to ca. 30°C, to ensure a...
متن کاملElectrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries
Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the tr...
متن کاملRing-chain synergy in ionic liquid electrolytes for lithium batteries
Lithium-ion batteries have been attracting much attention which enables the revolution of wireless global communication. Ionic liquids are regarded as promising candidates for lithium-ion battery electrolytes because they can overcome the limitations of high operating temperatures and flammability concerns of traditional electrolytes. However, at low temperatures they suffer from low ionic cond...
متن کاملIonic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of The Electrochemical Society
سال: 2021
ISSN: ['0013-4651', '1945-7111']
DOI: https://doi.org/10.1149/1945-7111/abdaff